extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.1(C22×S3) = D9×Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 144 | 4- | C18.1(C2^2xS3) | 432,280 |
C18.2(C22×S3) = D18.D6 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4 | C18.2(C2^2xS3) | 432,281 |
C18.3(C22×S3) = Dic6⋊5D9 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4+ | C18.3(C2^2xS3) | 432,282 |
C18.4(C22×S3) = Dic18⋊S3 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4 | C18.4(C2^2xS3) | 432,283 |
C18.5(C22×S3) = S3×Dic18 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 144 | 4- | C18.5(C2^2xS3) | 432,284 |
C18.6(C22×S3) = D12⋊5D9 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 144 | 4- | C18.6(C2^2xS3) | 432,285 |
C18.7(C22×S3) = D12⋊D9 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4 | C18.7(C2^2xS3) | 432,286 |
C18.8(C22×S3) = D6.D18 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4 | C18.8(C2^2xS3) | 432,287 |
C18.9(C22×S3) = D36⋊5S3 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 144 | 4- | C18.9(C2^2xS3) | 432,288 |
C18.10(C22×S3) = Dic9.D6 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4+ | C18.10(C2^2xS3) | 432,289 |
C18.11(C22×S3) = C4×S3×D9 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4 | C18.11(C2^2xS3) | 432,290 |
C18.12(C22×S3) = S3×D36 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4+ | C18.12(C2^2xS3) | 432,291 |
C18.13(C22×S3) = D9×D12 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4+ | C18.13(C2^2xS3) | 432,292 |
C18.14(C22×S3) = C36⋊D6 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4 | C18.14(C2^2xS3) | 432,293 |
C18.15(C22×S3) = C2×C9⋊Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 144 | | C18.15(C2^2xS3) | 432,303 |
C18.16(C22×S3) = C2×Dic3×D9 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 144 | | C18.16(C2^2xS3) | 432,304 |
C18.17(C22×S3) = D18.3D6 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4 | C18.17(C2^2xS3) | 432,305 |
C18.18(C22×S3) = C2×C18.D6 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | | C18.18(C2^2xS3) | 432,306 |
C18.19(C22×S3) = C2×C3⋊D36 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | | C18.19(C2^2xS3) | 432,307 |
C18.20(C22×S3) = C2×S3×Dic9 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 144 | | C18.20(C2^2xS3) | 432,308 |
C18.21(C22×S3) = Dic3.D18 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4 | C18.21(C2^2xS3) | 432,309 |
C18.22(C22×S3) = D18.4D6 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4- | C18.22(C2^2xS3) | 432,310 |
C18.23(C22×S3) = C2×D6⋊D9 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 144 | | C18.23(C2^2xS3) | 432,311 |
C18.24(C22×S3) = C2×C9⋊D12 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | | C18.24(C2^2xS3) | 432,312 |
C18.25(C22×S3) = S3×C9⋊D4 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4 | C18.25(C2^2xS3) | 432,313 |
C18.26(C22×S3) = D9×C3⋊D4 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 72 | 4 | C18.26(C2^2xS3) | 432,314 |
C18.27(C22×S3) = D18⋊D6 | φ: C22×S3/D6 → C2 ⊆ Aut C18 | 36 | 4+ | C18.27(C2^2xS3) | 432,315 |
C18.28(C22×S3) = C2×Dic54 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 432 | | C18.28(C2^2xS3) | 432,43 |
C18.29(C22×S3) = C2×C4×D27 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.29(C2^2xS3) | 432,44 |
C18.30(C22×S3) = C2×D108 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.30(C2^2xS3) | 432,45 |
C18.31(C22×S3) = D108⋊5C2 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | 2 | C18.31(C2^2xS3) | 432,46 |
C18.32(C22×S3) = D4×D27 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 108 | 4+ | C18.32(C2^2xS3) | 432,47 |
C18.33(C22×S3) = D4⋊2D27 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | 4- | C18.33(C2^2xS3) | 432,48 |
C18.34(C22×S3) = Q8×D27 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | 4- | C18.34(C2^2xS3) | 432,49 |
C18.35(C22×S3) = Q8⋊3D27 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | 4+ | C18.35(C2^2xS3) | 432,50 |
C18.36(C22×S3) = C22×Dic27 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 432 | | C18.36(C2^2xS3) | 432,51 |
C18.37(C22×S3) = C2×C27⋊D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.37(C2^2xS3) | 432,52 |
C18.38(C22×S3) = C23×D27 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.38(C2^2xS3) | 432,227 |
C18.39(C22×S3) = C2×C12.D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 432 | | C18.39(C2^2xS3) | 432,380 |
C18.40(C22×S3) = C2×C4×C9⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.40(C2^2xS3) | 432,381 |
C18.41(C22×S3) = C2×C36⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.41(C2^2xS3) | 432,382 |
C18.42(C22×S3) = C36.70D6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.42(C2^2xS3) | 432,383 |
C18.43(C22×S3) = D4×C9⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 108 | | C18.43(C2^2xS3) | 432,388 |
C18.44(C22×S3) = C36.27D6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.44(C2^2xS3) | 432,389 |
C18.45(C22×S3) = Q8×C9⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.45(C2^2xS3) | 432,392 |
C18.46(C22×S3) = C36.29D6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.46(C2^2xS3) | 432,393 |
C18.47(C22×S3) = C22×C9⋊Dic3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 432 | | C18.47(C2^2xS3) | 432,396 |
C18.48(C22×S3) = C2×C6.D18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.48(C2^2xS3) | 432,397 |
C18.49(C22×S3) = C18×Dic6 | central extension (φ=1) | 144 | | C18.49(C2^2xS3) | 432,341 |
C18.50(C22×S3) = S3×C2×C36 | central extension (φ=1) | 144 | | C18.50(C2^2xS3) | 432,345 |
C18.51(C22×S3) = C18×D12 | central extension (φ=1) | 144 | | C18.51(C2^2xS3) | 432,346 |
C18.52(C22×S3) = C9×C4○D12 | central extension (φ=1) | 72 | 2 | C18.52(C2^2xS3) | 432,347 |
C18.53(C22×S3) = S3×D4×C9 | central extension (φ=1) | 72 | 4 | C18.53(C2^2xS3) | 432,358 |
C18.54(C22×S3) = C9×D4⋊2S3 | central extension (φ=1) | 72 | 4 | C18.54(C2^2xS3) | 432,359 |
C18.55(C22×S3) = S3×Q8×C9 | central extension (φ=1) | 144 | 4 | C18.55(C2^2xS3) | 432,366 |
C18.56(C22×S3) = C9×Q8⋊3S3 | central extension (φ=1) | 144 | 4 | C18.56(C2^2xS3) | 432,367 |
C18.57(C22×S3) = Dic3×C2×C18 | central extension (φ=1) | 144 | | C18.57(C2^2xS3) | 432,373 |
C18.58(C22×S3) = C18×C3⋊D4 | central extension (φ=1) | 72 | | C18.58(C2^2xS3) | 432,375 |